Skip to Main Content
John B. Coleman Library Ask A Librarian

AGHR 4413-Z02-Geospatial Technology: Geospatial Technology: Digital Terrain Analysis

This course introduces students to Global Positioning System (GPS), Remote and ground sensors and geospatial technology using Geographical Information System (GIS) tools that help in capturing, storing, processing and displaying information

Geospatial Technology: Digital Terrain Analysis Full- text journal scholarly articles

To view the full-test articles- click on the hyperlinks and login with your PVAMU access information  

 

References: APA 6th edition 

Ackermann, O., Svoray, T., & Haiman, M. (2008). Nari (calcrete) outcrop contribution to ancient agricultural terraces in the southern shephelah, israel: Insights from digital terrain analysis and a geoarchaeological field survey. Journal of Archaeological Science, 35(4), 930-941. doi:10.1016/j.jas.2007.06.022

Bartsch, A., Gude, M., Jonasson, C., & Scherer, D. (2002). Identification of geomorphic process units in karkevagge, northern sweden, by remote sensing and digital terrain analysis. Geografiska Annaler Series A: Physical Geography, 84(3), 171. doi:10.1111/j.0435-3676.2002.00171.x

Behrens, T., Zhu, A., Schmidt, K., & Scholten, T. (2010). Multi-scale digital terrain analysis and feature selection for digital soil mapping. Geoderma, 155(3), 175-185. doi:10.1016/j.geoderma.2009.07.010

Bi, H., Li, X., Guo, M., Liu, X., & Li, J. (2006). Digital terrain analysis based on DEM. Frontiers of Forestry in China, 1(1), 54. Retrieved from http://pvamu.idm.oclc.org/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edb&AN=49777190

Bisson, M., Behncke, B., Fornaciai, A., & Neri, M. (2009). LiDAR-based digital terrain analysis of an area exposed to the risk of lava flow invasion: The zafferana etnea territory, mt. etna (italy). Natural Hazards, 50(2), 321-334. doi:10.1007/s11069-009-9346-7

Blaschke, T., Feizizadeh, B., & Holbling, D. (2014). Object-based image analysis and digital terrain analysis for locating landslides in the urmia lake basin, iran. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, IEEE J.Sel.Top.Appl.Earth Observations Remote Sensing, 7(12), 4806-4817. doi:10.1109/JSTARS.2014.2350036

Brown, D. G., & Olson, J. M. (2001). Integrated teaching of geographic information science and physical geography through digital terrain analysis. Journal of Geography, 100(1), 4. Retrieved from http://pvamu.idm.oclc.org/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edb&AN=75643336

Cheng, G., Jing, N., & Chen, L. (2013). A theoretical approach to domain decomposition for parallelization of digital terrain analysis. Annals of GIS, 19(1), 45-52. doi:10.1080/19475683.2012.758172

Cheng, G., Liu, L., Jing, N., Chen, L., & Xiong, W. (2012). General-purpose optimization methods for parallelization of digital terrain analysis based on cellular automata. Computers & Geosciences, 45, 57-67. doi:10.1016/j.cageo.2012.03.009

Crema, S., Llena, M., Calsamiglia, A., Estrany, J., Marchi, L., Vericat, D., & Cavalli, M. (2020). Can inpainting improve digital terrain analysis? comparing techniques for void filling, surface reconstruction and geomorphometric analyses. Earth Surface Processes & Landforms, 45(3), 736. Retrieved from http://pvamu.idm.oclc.org/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edb&AN=142082334

Debella-Gilo, M., & Etzelmüller, B. (2009). Spatial prediction of soil classes using digital terrain analysis and multinomial logistic regression modeling integrated in GIS: Examples from vestfold county, norway. Catena, 77(1), 8-18. doi:10.1016/j.catena.2008.12.001

Demirkesen, A. C. (2008). Digital terrain analysis using landsat-7 ETM+ imagery and SRTM DEM: A case study of nevsehir province (cappadocia), turkey. International Journal of Remote Sensing, 29(14), 4173-4188. doi:10.1080/01431160801891812

Deng, Y. (2007). New trends in digital terrain analysis: Landform definition, representation, and classification. Progress in Physical Geography, 31(4), 405-419. doi:10.1177/0309133307081291

Deng, Y. (2007). New trends in digital terrain analysis: Landform definition, representation, and classification. Progress in Physical Geography, 31(4), 405-419. doi:10.1177/0309133307081291

Deumlich, D., Schmidt, R., & Sommer, M. (2010). A multiscale soil-landform relationship in the glacial-drift area based on digital terrain analysis and soil attributes. Journal of Plant Nutrition & Soil Science, 173(6), 843. Retrieved from http://pvamu.idm.oclc.org/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edb&AN=63294759

Dou, W., Li, Y., & Miao, S. (0101). A data partitioning method for parallel digital terrain analysis. Journal of Algorithms \& Computational Technology, 9(3), 251. Retrieved from http://pvamu.idm.oclc.org/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=msn&AN=MR3364753; http://www.ams.org/mathscinet/MRAuthorID/1123955; http://www.ams.org/mathscinet/MRAuthorID/1124015; http://www.ams.org/mathscinet/MRAuthorID/1123647; http://www.ams.org/mathscinet-getitem?mr=3364753; https://journals.sagepub.com/home/acta; http://dx.doi.org/10.1260/1748-3018.9.3.251

Dou, W., Li, Y., & Miao, S. (2015). A data partitioning method for parallel digital terrain analysis. Journal of Algorithms & Computational Technology, 9(3), 251. Retrieved from http://pvamu.idm.oclc.org/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edb&AN=109900731

Dou, W., & Miao, S. (2016). A fast parallel re-computation with redundancy mechanism for parallel digital terrain analysis. Cluster Computing, 19(4), 1769-1785. doi:10.1007/s10586-016-0644-z

Florinsky, I. V. (2007). Solving three problems of exploration and engineering geology by digital terrain analysis. International Journal of Ecology & Development, , 52. Retrieved from http://pvamu.idm.oclc.org/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edsgsc&AN=edsgcl.169369720

Gerla, P. J. (1999). Estimating the ground-water contribution in wetlands using modeling and digital terrain analysis. Wetlands, 19(2), 394. Retrieved from http://pvamu.idm.oclc.org/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edb&AN=8463606

Gonga-Saholiariliva, N., Gunnell, Y., Petit, C., & Mering, C. (2011). Techniques for quantifying the accuracy of gridded elevation models and for mapping uncertainty in digital terrain analysis. Progress in Physical Geography, 35(6), 739-764. doi:10.1177/0309133311409086

Grohmann, C., & Miliaresis, G. (2013). Geological applications of digital terrain analysis. International Journal of Geographical Information Science, 27(7), 1403-1404. doi:10.1080/13658816.2013.772617

Hu, S., Qiu, H., & Pei, Y. (2019). Application of UAVs terrain data in digital terrain analysis of loess landslide. Geophysical Research Abstracts, 21, 1-1. Retrieved from http://pvamu.idm.oclc.org/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=140485748

Hu, S., Qiu, H., Pei, Y., Cui, Y., Xie, W., Wang, X., . . . Cao, M. (2019). Digital terrain analysis of a landslide on the loess tableland using high-resolution topography data. Landslides, 16(3), 617-632. doi:10.1007/s10346-018-1103-0

Iwahashi, J., Kamiya, I., & Yamagishi, H. (2012). High-resolution DEMs in the study of rainfall- and earthquake-induced landslides: Use of a variable window size method in digital terrain analysis. Geomorphology, 153-154, 29-38. doi:10.1016/j.geomorph.2012.02.002

Lacroix, M. P., Martz, L. W., Kite, G. W., & Garbrecht, J. (2002). Using digital terrain analysis modeling techniques for the parameterization of a hydrologic model. Environmental Modelling & Software, 17(2), 127. doi:10.1016/S1364-8152(01)00042-1

Lapena, D. R., & Martz, L. W. (1996). An investigation of the spatial association between snow depth and topography in a prairie agricultural landscape using digital terrain analysis. Journal of Hydrology, 184(3), 277-298. doi:10.1016/0022-1694(95)02975-3

Law, W. B., Slack, M. J., Ostendorf, B., & Lewis, M. M. (2017). Digital terrain analysis reveals new insights into the topographic context of australian aboriginal stone arrangements. Archaeological Prospection, 24(2), 169-179. doi:10.1002/arp.1567

Li, Y., Dou, W., Yang, K., & Miao, S. (2014). Optimized data I/O strategy of the algorithm of parallel digital terrain analysis. 2014 13th International Symposium on Distributed Computing and Applications to Business, Engineering and Science, Distributed Computing and Applications to Business, Engineering and Science (DCABES), 2014 13th International Symposium on, Distrib(TRUNCATED), , 34-37. doi:10.1109/DCABES.2014.10

Li, Y., Dou, W., Yang, K., & Miao, S. (2014). Optimized data I/O strategy of the algorithm of parallel digital terrain analysis. 2014 13th International Symposium on Distributed Computing & Applications to Business, Engineering & Science, , 34. Retrieved from http://pvamu.idm.oclc.org/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edb&AN=101278416

Miao, S., Dou, W., & Li, Y. (0101). An error-detecting approach for fault tolerance parallel recomputing with parallel digital terrain analysis. Journal of Algorithms \& Computational Technology, 10(1), 52. Retrieved from http://pvamu.idm.oclc.org/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=msn&AN=MR3493940; http://www.ams.org/mathscinet/MRAuthorID/1124015; http://www.ams.org/mathscinet/MRAuthorID/1123647; http://www.ams.org/mathscinet/MRAuthorID/1123955; http://www.ams.org/mathscinet-getitem?mr=3493940; https://journals.sagepub.com/home/acta; http://dx.doi.org/10.1177/1748301815618305

Miao, S., Dou, W., & Li, Y. (2014). Study on error-detecting approach for fault tolerance recomputing oriented parallel digital terrain analysis. 2014 13th International Symposium on Distributed Computing and Applications to Business, Engineering and Science, Distributed Computing and Applications to Business, Engineering and Science (DCABES), 2014 13th International Symposium on, Distrib(TRUNCATED), , 148-151. doi:10.1109/DCABES.2014.47

Miao, S., Dou, W., & Li, Y. (2014). Study on error-detecting approach for fault tolerance recomputing oriented parallel digital terrain analysis. 2014 13th International Symposium on Distributed Computing & Applications to Business, Engineering & Science, , 148. Retrieved from http://pvamu.idm.oclc.org/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edb&AN=101278440

Miao, S., Dou, W., & Li, Y. (2016). An error-detecting approach for fault tolerance parallel recomputing with parallel digital terrain analysis. Journal of Algorithms & Computational Technology, 10(1), 52. Retrieved from http://pvamu.idm.oclc.org/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edb&AN=115185712

Millar, S. (2004). Identification of mapped ice-margin positions in western new york from digital terrain-analysis and soil databases. Physical Geography, 25(4), 347-359. Retrieved from http://pvamu.idm.oclc.org/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edswsc&AN=000227884500005

Miller, B. A. (2014). Semantic calibration of digital terrain analysis scale. Cartography and Geographic Information Science, (2), 166. doi:10.1080/15230406.2014.883488

Qin, C. -., Wu, X. -., Jiang, J. -., & Zhu, A. -. (2016). Case-based formalization and reasoning method for knowledge in digital terrain analysis -- illustrated by determining the catchment area threshold for extracting drainage networks. Hydrology and Earth System Sciences, (1) Retrieved from http://pvamu.idm.oclc.org/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edsgsc&AN=edsgcl.482095594

Qin, C., Wu, X., Jiang, J., & Zhu, A. (2016). Case-based knowledge formalization and reasoning method for digital terrain analysis -- application to extracting drainage networks. Hydrology and Earth System Sciences, (8) Retrieved from http://pvamu.idm.oclc.org/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edsgsc&AN=edsgcl.481697520

Rothwell, J. J., Lindsay, J. B., Evans, M. G., & Allott, T. E. H. (2010). Modelling suspended sediment lead concentrations in contaminated peatland catchments using digital terrain analysis. Ecological Engineering, 36(5), 623-630. doi:10.1016/j.ecoleng.2008.10.010

Sofia, G., Eltner, A., Nikolopoulos, E., & Crosby, C. (2019). Leading progress in digital terrain analysis and modeling. ISPRS International Journal of Geo-Information, 8(9), 372. doi:10.3390/ijgi8090372

Tang, G., Xiong, L., & Li, F. (2018). GeoS4S module digital terrain analysis. International Journal of Geoinformatics, 14(3), 23-26. Retrieved from http://pvamu.idm.oclc.org/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=asx&AN=132437319

Tarolli, P. (2015). Digital terrain analysis in soil science and geology. Holocene, 25(6), 1048-1049. doi:10.1177/0959683615572731

Tarolli, P. (2015). Holocene book review: Digital terrain analysis in soil science and geology. Holocene, 25(6), 1048-1049. doi:10.1177/0959683615572731

Telbisz, T., Dragušica, H., & Nagy, B. (2009). Doline morphometric analysis and karst morphology of biokovo mt (croatia) based on field observations and digital terrain analysis. Croatian Geographical Bulletin, 71(2), 5-22. Retrieved from http://pvamu.idm.oclc.org/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=asx&AN=48735498

Telbisz, T., Mari, L., & Szabó, L. (2011). Geomorphological characteristics of the italian side of canin massif (julian alps) using digital terrain analysis and field observations. Acta Carsologica, 40(2), 255-266. doi:10.3986/ac.v40i2.10

Wilford, J. (2012). A weathering intensity index for the australian continent using airborne gamma-ray spectrometry and digital terrain analysis. Geoderma, 183-184, 124-142. doi:10.1016/j.geoderma.2010.12.022

Zhou, Q., Liu, X., & Sun, Y. (2006). Terrain complexity and uncertainties in gridbased digital terrain analysis. International Journal of Geographical Information Science, 20(10), 1137-1147. doi:10.1080/13658810600816573

Zhou, Q., & Zhu, A. (2013). The recent advancement in digital terrain analysis and modeling. International Journal of Geographical Information Science, 27(7), 1269-1271. doi:10.1080/13658816.2013.794281

Zhou, Y., Yan, L., Zhao, H., & Tu, J. (2019). A new classification and index calibration of lunar impact craters for digital terrain analysis. Astronomy Reports, 63(12), 1069. Retrieved from http://pvamu.idm.oclc.org/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edb&AN=140934414

Zushi, K. (2007). Regional estimation of japanese cedar (cryptomeria japonica D. don) productivity by use of digital terrain analysis. Journal of Forest Research, 12(4), 289-297. doi:10.1007/s10310-007-0021-0

John B. Coleman Library
Mailing Address: P.O. Box 519, MS 1040, Prairie View, Texas 77446
Physical Address: L.W. Minor St. / University Drive, Prairie View, Texas 77446
Reference: (936) 261-1535, Circulation: (936) 261-1542
Email: askalibrarian@pvamu.edu

Library Hours